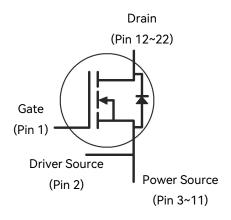


PCMP8N65C2P is 650V/191A SiC Power MOSFET

QDPAK-22L

General Description

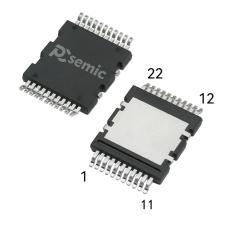
PingChuang 191A, 650V SiC MOSFET is an ultrahigh performance power SiC MOSFET, designed for high frequency applications where high efficiency and high reliability are required. The wide band gap material allows the design of a SiC MOSFET structure with low leakage current and conduction losses.


PCMP8N65C2P Summary

Symbol	Value
V_{DS}	650V
R _{DS(on)}	8mΩ
I _⊳ @25°C	191A
$Q_{G(typ.)}$	296.6nC

Features

- High Blocking Voltage with Low On-Resistance
- · High Speed Switching with Low Capacitance
- Easy to Parallel and Simple to Drive
- · Avalanche Ruggedness
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant


Equivalent Schematic

Applications

- LED Lighting Power Supplies
- High Voltage DC/DC Converters
- Industrial Power Supplies
- HVAC

Package QDPAK-22L

Package Marking

Product#	Marking	Package
PCMP8N65C2P	PCMP8N65C2P	QDPAK-22L

Maximum Ratings (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Value	Unit
V_{DSmax}	Drain-Source Voltage	V_{GS} =0V, I_{D} =100 μ A	650	V
V_{GSmax}	Gate-Source Voltage	Absolute Maximum Values	-10/+24	٧
V_{GSop}	Gate-Source Voltage	Recommended Operational Values	-3/+18	٧
		V _{GS} =18V, T _C =25°C	191	Α
l I _D	Continuous Drain Current	V _{GS} =18V, T _C =100°C	135	Α
I _{D(pulse)}	Pulsed Drain Current	Pulse Width t _p Limited by T _{Jmax}	381	Α
P _D	Power Dissipation	T _C =25°C,T _J =175°C	355	W
т т	Operating Junction and Storage		-55 to	°C
T_J , T_{stg}	Temperature		+175	<u> </u>

Reverse Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Unit
		V_{GS} = 0V, I_{SD} =50A		2.5		V
V_{SD}	Diode Forward Voltage	V_{GS} = 0V, I_{SD} =50A, T_J =175°C		2.4		V
I _s	Continuous Diode Forward Current	T _C =25°C, V _{GS} = 0V		107		Α
t _{rr}	Reverse Recover Time	I _{SD} =100A		22.6		ns
Q _{rr}	Reverse Recovery Charge	V _R =400V		1072		nC
l _{rrm}	Peak Reverse Recovery Current	dI _F /dt =7270A/μs		89		Α

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
R_{thJC}	Thermal Resistance from Junction to Case		0.42		°C/W

Electrical Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =100μA	650			V
\ \/	Cata Thursday I 1 1 1 1 1 1 1 1 1	$V_{DS}=V_{GS}$, $I_{D}=30$ mA	2	2.8	4	V
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=30$ mA, $T_J=175$ °C		2.0		V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =650V, V _{GS} =0V		1	100	μА
I _{GSS}	Gate-Source Leakage Current	V_{DS} =0V, V_{GS} =18V			250	nA
		V _{GS} =15V, I _D =100A		10.3		mΩ
	Drain-Source On-State	V _{GS} =18V, I _D =100A		8.0	10	mΩ
$R_{DS(on)}$	Resistance	V _{GS} =15V, I _D =100A,T _J =175°C		10.6		mΩ
		V _{GS} =18V, I _D =100A,T _J =175°C		9.8		mΩ
		V _{DS} = 20 V, I _{DS} = 80A		62.3		S
g _{fs}	Trans Conductance	V _{DS} = 20 V, I _{DS} = 80 A, T _J = 175 °C		59.2		S
C _{iss}	Input Capacitance	V _{GS} =0V		6865		pF
C _{oss}	Output Capacitance	V _{DS} =400V		481.9		pF
C _{rss}	Reverse Transfer Capacitance	f=100KHz		27.8		pF
E _{oss}	C _{oss} Stored Energy	V _{AC} =25mV		48.7		μJ

PCMP8N65C2P SiC Power MOSFET 650V/191A

E _{on}	Turn-On Switching Energy		19	77.7	μJ	J
E _{OFF}	Turn-Off Switching Energy		35	6.7	μJ	J
t _{d(on)}	Turn-On Delay Time	V_{DD} =400V, V_{GS} =-5V/18V,	1	3.8	ns	;
t_r	Rise Time	$I_D = 100A$, $R_{G(ext)} = 5\Omega$, $L = 50\mu H$	1	1.5	ns	;
$t_{d(off)}$	Turn-Off Delay Time		4	4.8	ns	;
t_{f}	Fall Time		1	1.8	ns	3
$R_{G(int)}$	Internal Gate Resistance	f=1MHz, V _{AC} =25mV	3	.81	Ω	!
Q_{GS}	Gate to Source Charge		7.	4.2	nC	<u> </u>
Q_{GD}	Gate to Drain Charge	V_{DS} =400V, V_{GS} =-5V/18V	12	23.6	nC	
Q_{G}	Total Gate Charge	I _D =80A	29	96.6	nC)

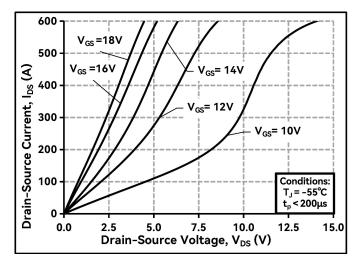


Figure 1: Output Characteristics $T_1 = -55^{\circ}C$

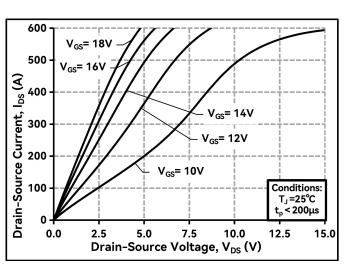


Figure 2: Output Characteristics $T_1 = 25^{\circ}C$

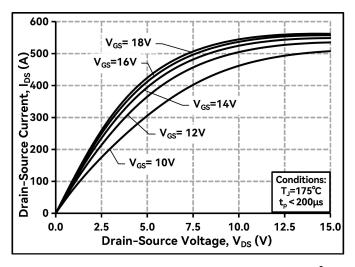


Figure 3: Output Characteristics $T_J = 175^{\circ}C$

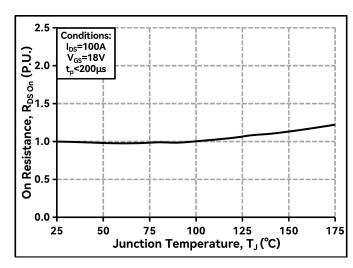


Figure 4: Normalized On-Resistance vs
Temperature

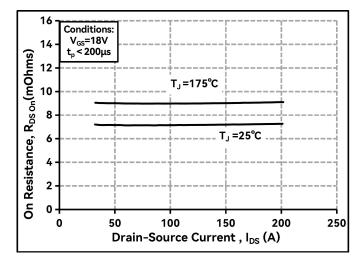


Figure 5: On-Resistance vs Drain Current For Various Temperatures

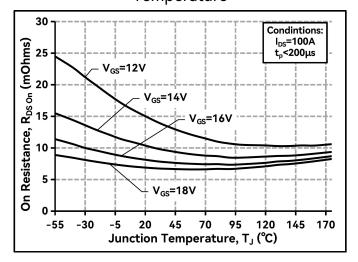


Figure 6: On-Resistance vs Temperature For Various Gate Voltage

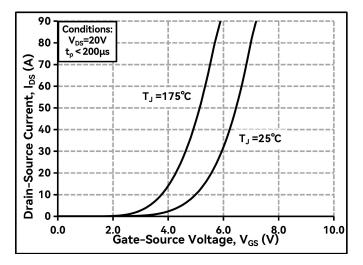


Figure 7: Transfer Characteristic for Various

Junction Temperatures

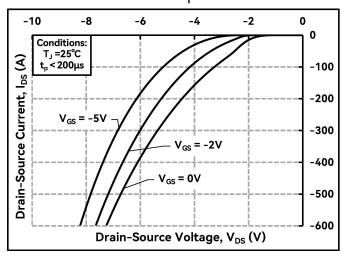


Figure 9: Body Diode Characteristic at 25°C

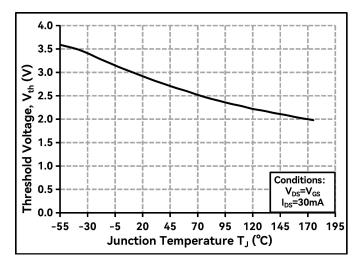


Figure 11: Threshold Voltage vs Temperature

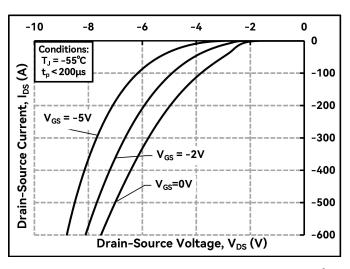


Figure 8: Body Diode Characteristic at -55℃

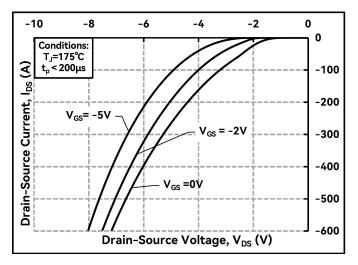


Figure 10: Body Diode Characteristic at 175°C

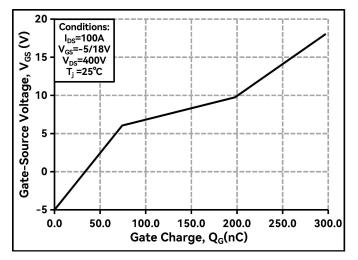


Figure 12: Gate Charge Characteristics

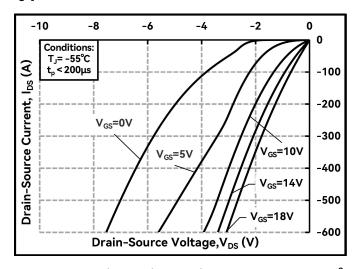


Figure 13: 3rd Quadrant Characteristic at -55℃

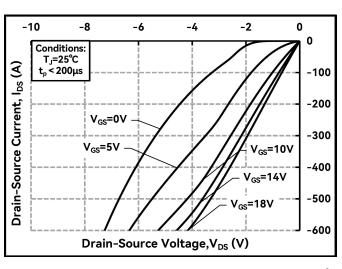


Figure 14: 3rd Quadrant Characteristic at 25°C

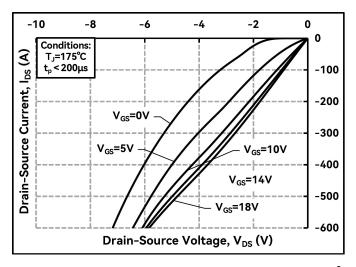


Figure 15: 3rd Quadrant Characteristic at 175°C

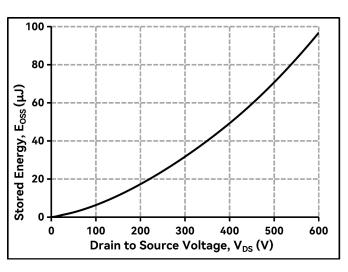


Figure 16: Output Capacitor Stored Energy

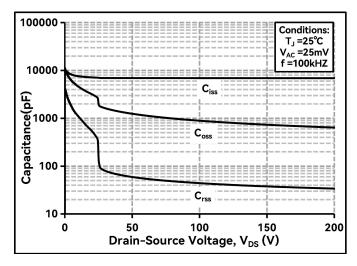


Figure 17: Capacitance vs Drain-Source Voltage (0-200 V)

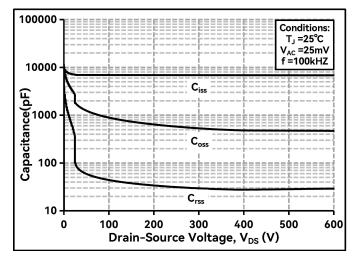


Figure 18: Capacitance vs Drain-Source Voltage (0-600 V)

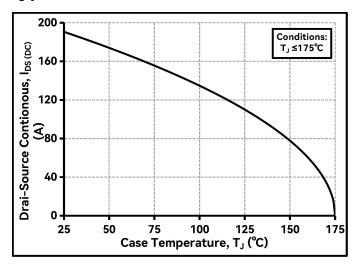


Figure 19: Continuous Drain Current Derating vs Case Temperature

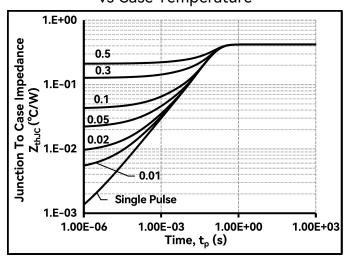
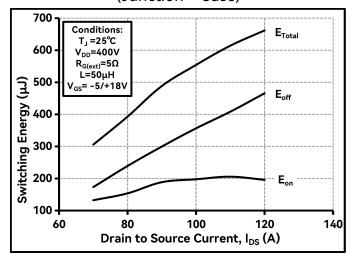



Figure 21: Transient Thermal Impedance (Junction - Case)

vs Drain Current

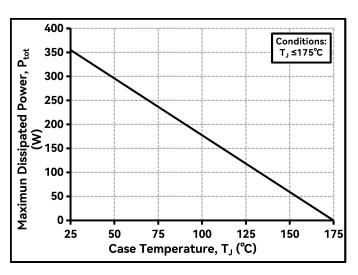


Figure 18: Maximum Power Dissipation **Derating vs Case Temperature**

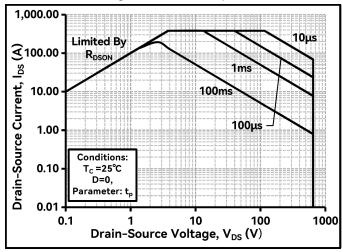


Figure 22: Safe Operating Area

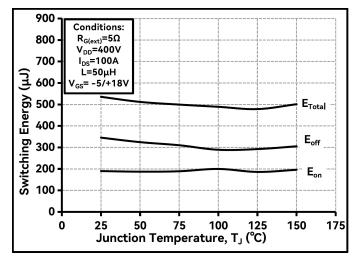
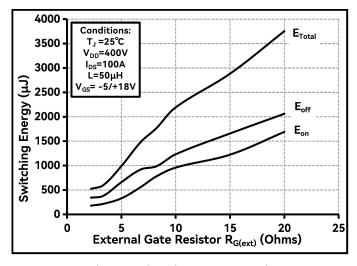



Figure 23: Clamped Inductive Switching Energy Figure 24: Clamped Inductive Switching Energy vs Temperature

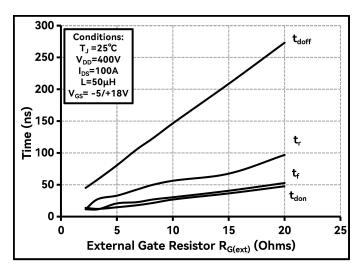
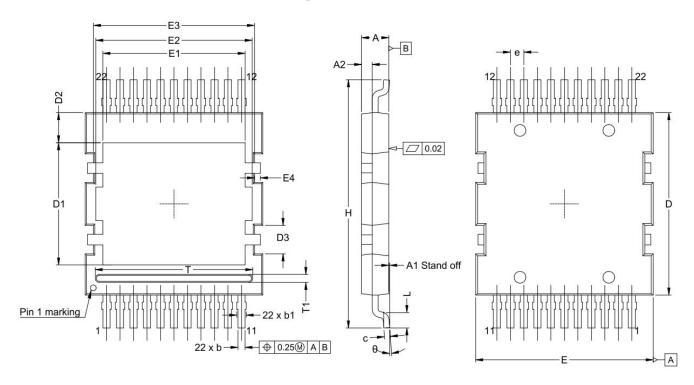



Figure 26: Switching Times vs $R_{G(ext)}$

Package Dimensions

QDPAK-22L

Turne		Millimeters			
Туре	Min	Nom	Max		
А	2.200	2.300	2.350		
A1	0.000	-	0.150		
A2	0.800	0.900	1.000		
b	0.500	0.600	0.700		
b1	0.500	-	0.900		
С	0.460	0.500	0.580		
е		1.140 BSC			
D	15.300	15.400	15.500		
D1	10.23	10.320	10.43		
D2		2.540 REF			
D3		2.400 REF			
Е	14.900	15.000	15.100		
E1	11.910	12.010	12.110		
E2		13.200 REF			
E3		13.600 REF			
E4		0.500 REF			

PCMP8N65C2P SiC Power MOSFET 650V/191A

Н	20.810	20.960	21.110
L	1.200	1.300	1.400
θ	0°	-	8°
Т	13.210	13.310	13.410
T1	0.500	0.670	0.700

UNIT:mm

IMPORTANT NOTICE

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

For more information on technology, delivery terms and conditions and prices, please contact the nearest PingChuang Technologies Office (www.pcsemic.com).